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Abstract-A mathematical model is presented which describes the formation of a crust on the inside of a cold 
pipe through which a fluid is flowing. A numerical/analytical treatment of the inward solidification problem 

is given and criteria presented which predict conditions under which blockage will occur. 

Subscripts 

; 

s, 
W, 

NOMENCLATURE Superscripts 

freezing parameter ; 
specific heat of fluid/solid ; 
nth coefficient in series (52); 
defined (31); 
perturbation of D(t) (58); 
heat flux series (52); 
friction factor ; 
spatial part of perturbation y (61); 
latent heat of fusion; 
thermal conductivity of liquid ; 
thermal conductivity of solid; 
length of pipe; 
pressure drop over pipe; 
fluid pressure ; 
Peclet number ; 
Peclet number at t = 0 ; 
volume flux in (1); 
crust dependent radial coordinate (42); 
Reynolds number ; 
radial coordinate; 
temperature; 
time ; 
radial velocity ; 
axial velocity ; 
axial coordinate ; 
pressure parameter (33) or (38); 
square of 6 ; 
perturbation of r; 
radial position of crust; 
temperature; 
thermal diffusivity of fluid (= k,/pC) ; 
nth eigenvalue in series (52); 
kinematic viscosity of fluid; 
density of fluid/solid; 
perturbation growth rate (61). 

(lb 
(2), 
* 9 

stable solution ; 
unstable solution; 
dimensional variable. 

INTRODUCTION 

RECENTLY, the problem of the solidification of a warm 
liquid as it flows through a pipe, the walls of which are 
maintained at a uniform sub-freezing temperature, has 
received considerable attention. This type of solidifi- 
cation process arises in the flow of liquid metals 
through a nozzle and the ensuing formation of a solid 
crust on the nozzle walls. If conditions are sufficiently 
severe, the nozzle may block. 

The seminal paper in this field is due to Zerkle and 
Sunderland [l]. It is concerned with laminar flow with 
a prescribed constant inlet velocity and the pressure 
drop down the pipe which is required to maintain the 
inlet velocity as the crust is formed is calculated from 
this. However, the analysis does not cover the impor- 
tant case of blockage. A later paper by Des Ruisseaux 
and Zerkle [6] did consider blockage criteria. Epstein, 
Yim and Cheung [2] considered the flow rate and 
penetration of the fluid by prescribing a power-law 
description of the solidified crust. The results of their 
numerical analysis were compared with experimental 
measurements. 

tjzisik and Mulligan [3] investigated both transient 
and steady state models with a slug-flow velocity 
profile in the axial direction and no radial convection. 
Martinez and Beaubouef [4] presented a laminar flow 
model with radial and axial velocities prescribed from 
the continuity and momentum equations. 

In the current investigation, a laminar velocity 
prescription will be used, as in [4]. The maintained 
pressure gradient along the pipe is assumed constant, 
so that as the crust thickness and viscous resistance 
increases, the inlet speed decreases. In fact, it is shown 
that the governing equations are non-linear and 
integro-differential in character ; it will also be shown 
that under certain conditions, the steady-state equa- 
tions have no solution. Finally, from the analysis of the 
time-dependent model, a simple criterion will be 
presented to predict whether a given system will lead to 

at fluid/solid interface ; 
at pipe entrance; 
at steady state; 
at pipe wall. 
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nozzle blockage. and a brief comparison with some 
experimental results with water due to Des Ruisseaux 
and Zerkle is made. showing good agreement. 

THE HYDRODYNAMIC MODEL 

A cylindrical pipe of length I, and radius r,, has its 
wall maintained at a constant temperature (T,,) below 
the freezing temperature (T,,,) ofa fluid which is forced 

through the pipe by a maintained pressure drop (P) 
over the ends of the pipe. The fluid loses heat to the 
colder wall and starts to solidify, forming a crust on the 
tube wall. The fluid temperature at the inlet is assumed 

constant and uniform at a value r,,, greater than the 
melting temperature. Without loss of generality, the 
outlet pressure may be assumed zero. 

The densities of the fluid and solid phases arc 
assumed to be identical and constant, denoted by p, 
The thermalconductivities offluid and solid (k, and k,, 
respectively) the kinematic viscosity (v), the specific 
heat (C) of the fluid and the latent heat of fusion (H), 
are all assumed constant. 

We are concerned with the growth of the solidified 
crust and so propose that the equations of momentum. 
continuity and thermal energy are those of steady- 
state, since the fluid motion will adapt itself to the 

changing crust much more quickly than the crust can 

change. Nevertheless, the fluid temperature and mo- 
tion are time-dependent, via the crust, but yuasi- 
steadily so. This is the standard approximation for 

large Stefan numbers. corresponding to the fact that 
the timescale associated with the motion of the 
interface is longer than either the thermal or viscous 

timescales. We have axial and radial velocity fields, 

respectively \v*, and II*, defined as 

w*(r*, z*, I’) = 2Q(t*)6*+‘(:*, I’) 

x(1 - r*26*m’(z*. t*)) (1) 

u*(r*, z*, t*) = (r*/s*)(&j*/&*)M* (2) 

where r* = B*(.z *. r*) gives the position of the solid; 
liquid interface and Q(t* ) is determined below. These 
fields satisfy the mass continuity equation and the no- 
slip condition at r * = fi*, (see [4]). We define a local 

Reynolds number 

Re = 2Q(t*),G* (=2i5*M’*/v) (3) 

based on local pipe diameter and local bulk axial 
velocity bc*. We similarly define a local Peclet number 

!‘e = ~Q(t*X/u?* ( -2fi*M’*/h-). (3) 
The local bulk axial velocity (radially averaged) is 

i 

,>* 
rc.*(2*. r*) = (j* 1 lr*bv*(r*.z*, t*)dr* : (5) 

. 0 

that is 

\V*(: *, t*) = Q(r*)M*‘(z*,r*). (6) 

The equation for the pressure drop down the pipe is 
the familiar 

7) 

where in the case of laminar flow the friction factor,f. is 
given by 

f = 64/R<, (8) 

and so 

Equation (9) has to satisfy the following boundary 
conditions 

[J*(c), /*) 7 F’ (IO! 

p*(/,,.f*) :.= 0 (11) 

and in order to satisfy these conditions, Q(t*) musk be 

given by 

Q(t*) = ” -,(, c (12) 
8p s* yx-*, r*)d.r* 

* 0 

giving the fluid pressure 

i 

I,< 
ii” ‘(\*. r*)d.r* 

/‘*(:*.I*) = P.;; 

i 

(13) 

3* YT*. r* )dx* 
. IS 

It is clear from (12) and (13) that both the fluid 
pressure and velocity depend upon the crust over the 
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where entire length of the pipe. It should also be noted that if 
6* is a monotonically decreasing fun~~on of t* then 
Q(t*) will be a monotonicaIly decreasing function oft*, 
and so the inlet velocity will decrease as the crust 
thickens. 

dT* 8 T* 1 Xf* a=T* 
U*dr*+W*dz*=K 

( 
F+pq-z-+p) 

(14) 

pea = ZQ(O)/lcr, = Pe at t = 0 (321 

a = d,/2Q(O) = lo/roPeo (33) 

&,,=(T,,,- TwMTo - Tmh (34) 

We have the boundary and initial conditions on 6 

for 0 < r* < 6* and 0 < z* < I,. For the solid region, 
we have 

a*-r * 1 aT* +azT* =o _ I_~ ~ 
a@ + r* ar* aze2 

(15) 

for 6* < r* < r. and 0 < z* < la. Equations (14) 
and (15) are to be solved subject to the conditions 

T*(r*,O,t*) = T, (16) 

T*(S*,z*, t*) = T, (17) 

T*(r,,, z*, t*) = T, (18) 

C?(tl,t) = 1 (35) 

6&O) = 1 (36) 

so that from (12); 

Q(0) = P~~/~~v~* (37) 

a = 4pvul$Pr$ (38) 

Fe0 = Pr$4pvdo. (39) 

In this analysis, the Pedet number is assumed to be 
large enough to justify the neglect of axial conduction 
in (25) and (24). This is consistent with the small slope 
of the solid/liquid interface, that is aS*/az* is of order 
(l/Pe& In the important case of blockage, the large 
Peciet number expansion will break down when S is of 
order I/Fe,. A different scaling is required here, 
together with co~ideration of an asymptotic match 
between the outer solution outlined above and an 
inner expansion. This inner expansion would have to 
include axial conduction and time rates of change of 
temperature since progress towards blockage becomes 
very rapid. The analysis involved in this procedure is 
complicated (see, for example, Stewartson et al. [7]). 
Nevertheless, the present analysis provides the leading 
term in the asymptotic expansion and the results given 
are to be interpreted in this sense. 

pfi$= ks$ -k !? 
f ai-* r*_-s*- 

(19) 
r’=J*+ 

At this point, it is convenient to non-dimensionalise 
the equations. We use the following scalings 

6*(z*, t*) = r&z, t) (20) 

T*(r*,z*,t*) = T, + (To - T,)B(r,z,t) (21) 

where the independent variables are scaled 

r* = ror (22) 

z* = 2Q(O)z,‘ic (23) 

t* = p~r~~/2k~(T* - T,) (241 

to obtain 

1 

s” 

=D(t) ( l a28 !??+A E+-- - 
r ar Pei a2 1 

(25) 

for 0 c r < 6 and 0 K z < a, with 

(26) 

for 6 < r < 1 and 0 < z < a subject to 

@(r,O,t) = 1 

B(S, z, t) = 0 

B(l,z,r) = -ow 

and the interface condition 

(27) 

(28) 

(29) 

233 

A case of practical interest is the flow of liquid steel 
through a tundish nozzle. Since for liquid metals the 
Prandtl number (v/rc) is small, then it follows that the 
Reynolds number (Be = t&e/v) is large. This then 
implies that the flow is turbulent and the present 
analysis must be considered as only a first approxi- 
mation (The authors intend to return to the case of 
turbulent flow in a later publication.) 

By neglecting terms of order (I/Pe$), equation (26) 
with (28) and (29) has the solution 

t3(r,z,t) = 5, 
W-/d tz,t)) 

ln&(z,t) ’ 
(40) 

It then remains to solve (25) subject to (27), (28) and 
(30). This system is complicated by the presence of 6 in 
(25) and (30), coupling these two equations in a 
complex way. To simplify matters, we remove the 
moving boundary by writing 

@(r, 2, t) - TV, z) (41) 

via 

(30) 
r = R6(z, t) (42) 

which has the following effect on derivatives 
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(7 1 ? 
_-- _._ 
Pr (5 8R 

(43) 

d ? R (16 i 
-+-__ - _ .~~ ~_. 
dZ dz 6 ?z dR 

(44) 

and so equations (25) (27), (28) and (30) become 
respectively 

(1 - R2); = D(t) $ + f 

^ 
:$ (45) 

T(R,O) = I (46) 

T(l.2) = 0 (47) 

where we have ignored axial conduction in (25 ), used 

(40) in (30) to obtain (48) and where 

B=+H,. (49) 
/ 

Equation (45) with boundary conditions (46) and (47) 
is the Graetz-Nusselt problem for an isothermal wall 
which was investigated by Sellars et al. [IS]. The 

equation is modified by the presence of D(t), admit- 
tedly dependent on 6, which affects their analysis only 
parametrically. For a given D(t), (45) can be solved and 

an expression for aTjaR at R = 1 evaluated and used 

in (48) to find 6 at the next time step. A new value for 
D(t) can then be calculated. The initial conditions are 

given by equation (36) and by implication and de- 
finition (31), D(0) = 1. There are two independent 
dimensionless parameters which determine the 

position of the crust, namely c( and B. 

THE CRUST 

This analysis is concerned primarily with the de- 

velopment of the solid crust and so all that is needed is 
an expression for c?Tj?R at R = 1. This can be 

obtained either by direct numerical integration of (45), 
which can be considered independent of time, or by 
further analysis. Alternatively, one can take advantage 
of the work done by Sellars et al. [S] on the classical 
Graetz problem and use 

= = i C,Rb(l)eeLiD’Z)Z =f(z,r) (50) 
R 1 “=O 

where the C,, R;(l) and i., are provided by the 
aforementioned party for n = 0 to 9 and one may use 
the asymptotic solutions [S] for n > 9. 

This series is derived from the solution to (45))(47) 
which is 

T(v,z) = 1 C,R,(r)ec’2D’ (51) 
n-II 

where R, satisfies the homogeneous differential 

equation 

rRi + Ri + $r(l - r’)R. = 0 (52) 

with R,(l) = 0, R,(O) = 1 and R,(O) = 0. 

For small zD(t), the series in (50) is slowly convergent 
and since we expect a to be small in certain cases of 

experimental interest, it will be more useful to have an 
expression for (?r!dR),, 1 as z -+ 0. This was de- 
termined to be 

?7’ 
i- I ?R 

+0.670792-0.678325(0~). ’ ’ as Dz-+U 
‘R-1 

C3! 

from a least-squares fit to (50) for small J. 

Having calculated (I?T~?R)~ I. analysis shows that 
a phase-plane plot of %/it vs 5 at a given distance 

down the pipe has two distinct sets of curves (see Fig. 
2). The top curve (i) clearly shows two possibilities for 
steady-state solution where it crosses the ii axis. The 
path is from right to left as time increases and ii will 

reach (5, after a time t,. This is apparently a stable 
steady-state solution. There is no way to reach the 

point (*). Curve (ii) shows a trajectory for which there 
is no steady-state solution and in this case the pipe will 

block. The critical case where the 6 axis is tangent to 
the curve is technically unstable since %/?‘I is always 

less than or equal to zero but numerical evidence 

indicates that an infinite time would be needed to reach 

the tangent. 
In principle, for a given B and r, a curve for 6tr. I) 

could be quickly produced without having to solve the 

differential equation (48) for 6. However, since the right 
hand size of (48) depends upon z and D(t), which in 

turn depends on the crust over the entire length of the 
pipe. a numerical solution of (48) is necessary. Ad- 
ditionally. if one required to know the time taken to 

reach a steady-state, a phase-plane plot alone would 
not give this. Since equation (48) is integro-differential, 
we examine the critical points in the phase-plane in 

greater depth. 

STABILITY OF SOLCWIONS 

Equation (48) was first solved in conjunction with 
(45) for the steady state crust. lt was solved with fifteen 

radial grid points by the method of lines using a 

a6 
?Z t 

F I(;. 2 
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FIG. 3. 

standard IBM Application Package, the System/MO 
Continuous System Modelling Program (CSMP). The 
independent variable z was resealed as Dz to avoid 
repetition of the calculations. The only parameter to 
vary was B. The resealing of z meant that for a given LY 
and B, the equation 

has to be solved for D. The right hand side of this 
equation is a monotonically increasing function of uD 
starting at the value 1 when ctD = 0. It can be seen from 
Fig. 3 that, as predicted, there are either two, one or no 
solutions to this equation depending on the value of B. 
The double solution was noted, in terms of two distinct 
Reynolds Numbers, by Des Ruisseaux and Zerkle [6] 
and they stated that only one solution was stable. 

For a given tl with B < Bcri,, two values of D return 
two possible steady state configurations for the crust. 
The larger value of D would result from a crust which 
had encroached further into the liquid. It is main- 
tained that the crust would never actually reach this 
state and would stop development at the lower value of 
D. This may seem clear from Fig. 2; however, Fig. 2 
shows only the phase plane of the value of the crust at 
the end of the pipe. In fact, we need to show that the 
point marked S is stable in the entire ‘phase- 
continuum’ for all z since (48) is an integro-differential 
equation. This is a fairly straightforward but lengthy 
process. 

Equation (48) can be written as 

ar 2B _=- 
at In I- 

+f(z,t) for Olzlcr 

where 

and 0 _< t (54) 

I- = 6’ and D(t) = d (55) 

f= O(Z-“~) and T(z,t) + 1 

and as z + cc 

f= O(eekz) 

and that f is monotonically decreasing with z. If we 
assume a steady state solution given by lY = T,(z) and 
D = D, then 

g-+m=o 
s 

i.e. r, = exp[ -2B/f,(z)] 

and so 

0, = i 
s 
' exp[4B/f,(z)] dz 

0 

or 

(56) 

Ds=$ s D, 

exp [4B/f,WW dz. (57) 
s 0 

Equation (57) has two, one or no solutions for D,, as 
depicted in Fig. 3, since_& is monotonically decreas- 
ing, and so the right hand side is monotonically 
increasing from the value one. We now perturb this 
solution and set 

D(t) = D, + d(t); r(z,t) = r,(z) + y(z,t) (58) 

and this gives, from (54)-(56) as y and d are small 

ay - 2By z&) dfs -p 
Z-r,ln2r,+D,dz 

*,I? 
ci s = Y(Z, t)dz 

orjo’ 
Introducing normal modes by letting 

~(z, t) = e?(z) 

where Q is the growth rate, then 

This is a homogeneous integral equation for the 
eigenvalue n with separable kernel and can be solved in 
a standard manner. 

The integral on the right hand side of (61) is a 
constant, albeit unknown, which we denote by G and 
so (61) yields 

g(z) 2WW4 __= _ 
C(z) aD,r:(a + 2B/T, ln’r,) 

(62) 

We then integrate (62) from z = 0 to z = CI and the 
condition for a non-trivial solution is 

1,s s a (z/D,) WYz)dz 
u o r,3(0 + 2B/r, ln2 r,) (63) 

which determines Q. 
Substituting for T,(z) from (56) in the integral then 

gives It is known that as z-0 
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z z(d~;/dz)exp(6B/f(z))dz 

iioTf~jEjj$fi 
(64) 

If 0 = 0 we recover 

x exp[4B/f(x)] d& * 
dx .f 34 

(65) 

which can be integrated by parts, in conjunction with 

(57), to give 

D, = ~exp[4B[s(z)] when a = 0. (66) 

Note that this equation can be obtained directly from 

(57) by differentiation with respect to D, and so (66) 

corresponds to the critical case of the single (repeated) 

root solution to (57). 
When (57) has two distinct roots, Djr’ and Di" 

(> Dj"), it is fairly clear that for the same c( and B there 
exists a unique solution 0: to (66) for which Dj" < 0: 
< Di!), although 0: does not ofcourse satisfy (57). It is 
also apparent that 

and 

(67) 

1 
D’Z’ < -exp(4B/fjZ’(a)). 5 

2 
(6X) 

We now assume that C-J is positive, then equation (64) 
gives 

i.e. D’,” < iexp(4Blf:“(a)). 

This contradicts (67) and so 0:" cannot satisfy (64) for 
positive C, hence D'," represents a stable crust. The 

above and following arguments depend upon the 

quantity a + 2B/rS In’ rS being positive, otherwise the 
inequalities would be reversed. If this were not so, 

equation (63) would admit no real solutions for D, 

since df/dz < 0 for z > 0. Equation (63) could 
conceivably have real solutions for D, if the quantity 

0 + 2B/T,ln’ r, changed sign but then y(z) would be 

unbounded when this happened, as indicated by (68). 

a = IO+ 
B 1 9.5 
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a = lO+j 
0= 10.5 

0.10 0.20 0.30 O.LO 0.50 0.60 0.70 080 0.90 1.00 

Frc. 5. 

Next, assume that Dj2’ is a stable solution with D <: 0; 
then (64) gives 

-4B 
I=- 

LKDQ’ 9 s 

a z(dfSz~/dz}exp(6B/f~z’)dz 

0 230 ~~~2)2exp(2~/~~z)~ 

’ z(dfi2’/dz)exp4B/fj2))dz 
(2)2 f, 

= j&j exp(4B/f',Z'(u)) - 1 
s 

i.e. D$ > ~exp[4B/J~2’(or)l 

which contradicts (68) and so Df’ cannot represent a 
stable solution. 

TINfE DEVELOPMENT 

The solution to equation (48) is obtained for various 
values of B and 0: by a fourth order Runge-Kutta 
process on the function T(z,t) = P(z,t). At f = 0, 
ar/& is undefined so we start with 

I-,(&) = 1 (691 

r,(st) = I - g?&)‘” (70) 

r,(&) = 1 - 2(BSt)1’2 2 6 j G N, N&z = ct 
(71) 

where rj(t) = IQ%, t) is based on the solution of X,/at 
= 2Bfin I- for small t. The value of 6t is chosen to 
ensure that the trajectory of S(a, r) (Fig. 2) starts near 6 
= 1, giving 6t as typically 0.01. The number of axial 
grid points, N, is 20. At each of the four substeps of the 
Runge-Kutta integration, D(t) must be evaluated. The 
method chosen was an integration by Simpson’s Rule. 
Then (c~T/~R)~~~ is evaluated using (SO) or (53) for 
each grid point. 

Figure 4 is an example of the growth of the solid 
crust where a steady-state is reached and Fig. 5 shows 
the development towards blockage in a pipe of the 
same length at a lower wall temperature. In Fig. 7 we 
show a curve giving critical values of B for a given (Y 
dividjng blockage and non-blockage regimes. 

The parameter a is typically very small and it would 
seem that the equation of the critical line is described 
to a good approximation by 

B = 10-W-7/20 (72) 

for lo-’ < CL i 10m3. Note that for a given fluid, 
physical changes and their effect on a and 3 can be 
briefly summarised by 
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B 

0.20 
1.20 
2.20 
3.20 
4.20 
5.20 
6.20 
7.20 
8.20 
9.20 

10.20 
11.20 
12.20 
13.20 

TableI.a= 10 ’ 

6&K) D\ 

0.9935 1.020 
0.9602 1.129 
0.9256 1.261 
0.8895 1.423 
0.8513 1.627 
0.8107 1.892 
0.7669 2.250 
0.7184 2.762 
0.6628 3.568 
0.5936 5.085 
0.47 18 10.790 

r: 

0.00297 
0.0225 
0.0450 
0.0675 
0.0975 
0.11 
0.160 
0.2025 
0.280 
0.410 
1.280 

<0.25t 
<0.15t 
<0.10t 

*Where t, is the time taken to reach the steady-state 
(/SG/L?f/ < 10-s). 

t Denotes blockage times. 

FIG. 7 

assuming constant fluid properties. 

FIG. 6 
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FIG. 8. 

Table 1 presents results for a particular numerical 
experiment. The value of CI was 10e5 and B was varied 
in the manner shown. The last three values of B led to 
the pipe blockage as the accompanying Fig. 6 (the 
phase-continuum diagram) shows. The time taken (in 
dimensionless ‘seconds’) for the system to reach steady- 
state is shown, along with the steady-state value D, of 
o(t) and the steady-state value 6,(a) of 6(c(,t) where 
applicable. 

It was noted earlier that it is difficult to find the exact 
value of B for a given a which divides the 
blockage/non-blockage regions because the compu- 
tation time increases as we approach this value. 
However, the previous stability analysis shows that the 
critical case corresponds to equation (57) having 
repeated roots. This permits us to define a dividing line 
in the a, B plane which separates blockage from non- 
blockage regions (see Fig. 7). We note that (66) can be 
rewritten as 

D, = +‘(a) = ;~5,~(a). (75) 

To determine S,(a) (the critical steady-state crust 
position at the nozzle exit) we draw a graph of (75) with 
log D, as ordinate and log6L4(cr) as abscissa for 
variable B. (This is a straight line through the point (0, 
log 2) with unit gradient.) If we then plot on the same 
graph some non-critical values of log 0, and log SL4(c() 
for fixed a, we obtain a further curve. The point of 
intersection of the two lines must then give the critical 
values of 6,(a) and 0,. Figure 8 shows results from 
Table 1 with critical values of 0.463 and 10.9 

respectively. 

COMPARISON WITH EXPERIMENT 

Figure 9 shows some experimental results, taken 
from [6], where water at approximately 20°C has been 
passed through a pipe, at various values of wall 
temperature and inlet pressure. The solid symbols 
represent cases where blockage occurred and the open 
symbols denote steady-state solutions. Superimposed 
is a curve showing the dividing line between blockage 
and non-blockage derived from the theory presented 
in this paper. The value of the quantity PVK was taken, 
at the freezing point of water, to be 2.38 x lo-” 
kgmse2. This is higher value than that which would 
have been used by Des Ruisseaux and Zerkle and so 
the values of a calculated for the experimental points 
are probably too high. 

Some experiments on liquid steel are planned by 
British Steel at the Grangetown Laboratories. The 
experiments will be carried out with pipes of lengths 
between one and three feet and internal diameter of 
one inch. Vacuum suction will be used to supply the 
pressure drop. For liquid metals of Prandtl number 
0.01 flowing through a pipe of aspect ratio IO/r0 = 20, 
the parameter a = 2OOO/Re,. With a thermal 
diffusivity of 2 x 10m5 m2 s-r and a density of 7500 kg 
m - 3, such a fluid, forced through a pipe of length 0.3 m 
by a pressure drop of lo5 kg m-r s-‘, will have a value 
ofa - 2.1 x 10m6. If this fluid has a melting point of 
17OOK, enters the pipe at 1900K where the wall 
temperature is 300 K, a value of B will be - 7 and it can 
be seen from Fig. 8 that a steady state solution will be 
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predicted. If the pipe length is quadrupled. we have 

blockage. However, as previously remarked, flow of 
liquid steel will be in most cases turbulent, highly 

desirable from the point of view of mixing and an even 
distribution of impurities. Because of these impurities, 
there will also be a ‘mushy region’ and not a single 
melting point. It is our intention to incorporate these 

modifications in new models. 
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UN MODELE MATHEMATIQLJE DU BLOCAGE DE TIJYERE PAR CONGEL A l-ION 

Rbume~--On presente un modele mathimatique qui dtcrit la formation d’une croitte sur la pare) mterne 
dun tube froid a I’inttrieur duquel s’ecoule un fluide. Une resolution numCrique!analytique du probltme de 
la solidification interne est donnee et on presente des critires qui donnent les condtttons d’apparition dun 

blocage. 



A mathematical model of nozzle blockage by freezing 

EIN MATHEMATISCHES MODELL FiSR DIE BLOCKIERUNG 
EINER DijSE DURCH GEFRIEREN 

Zusammenfassung- Es wird ein mathematisches Model1 vorgelegt, welches die Ausbildung einer Kruste an 
der Innenwand eines kalten Rohres beschreibt, das von einem Fluid durchstriimt wird. Eine numerisch/ana- 
lytische Behandlung des inneren Erstarrungsproblems wird durchgefiihrt und Kriterien angegeben, aus 

denen die Bedingungen ersichtlich sind, unter welchen Blockierung auftritt. 

MATEMATMqECKAR MOAEJIb WIOKMPOBAHHJI COnJIA lYIPM 3ACTbIBAHMM 
‘HCMflK0C-W 

AuHoTalmn IIpc;Ic-raeneHa MaTeMaTuqecKaR Monenb 3aTsepnesamifl XIILIKOCTH Ha aHyrpemfei-4 cTeHKe 
oxnaih-2aehio8 ~py6b1. flaev9 qHcneHHo-aHan6fTHYecKoe pemeHwe sanase HanpaBneHHoro euyTpb 
npOUcCCa 3aTBCpLleBaHHfl M n~iICTaB.lcHbI KplrTepHH ,!,.",I OnpeLWeHHfl yCnOBMit BO3HUKHOBeHUR 

GIIOKA~OBKA conna. 
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