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Abstract—A mathematical model is presented which describes the formation of a crust on the inside of a cold
pipe through which a fluid is flowing. A numerical/analytical treatment of the inward solidification problem
is given and criteria presented which predict conditions under which blockage will occur.
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NOMENCLATURE

freezing parameter;

specific heat of fluid/solid ;

nth coefficient in series (52);
defined (31);

perturbation of D{t) (58);

heat flux series (52);

friction factor;

spatial part of perturbation y (61);
latent heat of fusion;

thermal conductivity of liquid;
thermal conductivity of solid;
length of pipe;

pressure drop over pipe;

fluid pressure;

Peclet number;

Peclet number at t = 0;

volume flux in (1);

crust dependent radial coordinate (42);
Reynolds number;

radial coordinate;

temperature;

time;

radial velocity;

axial velocity;

axial coordinate;

pressure parameter (33) or (38);
square of ¢ ;

perturbation of T';

radial position of crust;
temperature;

thermal diffusivity of fluid (=k,/pC);
nth eigenvalue in series (52);
kinematic viscosity of fluid;
density of fluid/solid ;
perturbation growth rate (61).

at fluid/solid interface;
at pipe entrance;

at steady state;

at pipe wall
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Superscripts

1), stable solution;
(2), unstable solution ;
* dimensional variable.

INTRODUCTION

RECENTLY, the problem of the solidification of a warm
liquid as it flows through a pipe, the walls of which are
maintained at a uniform sub-freezing temperature, has
received considerable attention. This type of solidifi-
cation process arises in the flow of liquid metals
through a nozzle and the ensuing formation of a solid
crust on the nozzle walls. If conditions are sufficiently
severe, the nozzle may block.

The seminal paper in this field is due to Zerkle and
Sunderland [1]. It is concerned with laminar flow with
a prescribed constant inlet velocity and the pressure
drop down the pipe which is required to maintain the
inlet velocity as the crust is formed is calculated from
this. However, the analysis does not cover the impor-
tant case of blockage. A later paper by Des Ruisseaux
and Zerkle [6] did consider blockage criteria. Epstein,
Yim and Cheung [2] considered the flow rate and
penetration of the fluid by prescribing a power-law
description of the solidified crust. The results of their
numerical analysis were compared with experimental
measurements.

Ozisik and Mulligan [3] investigated both transient
and steady state models with a slug-flow velocity
profile in the axial direction and no radial convection.
Martinez and Beaubouef [4] presented a laminar flow
model with radial and axial velocities prescribed from
the continuity and momentum equations.

In the current investigation, a laminar velocity
prescription will be used, as in [4]. The maintained
pressure gradient along the pipe is assumed constant,
so that as the crust thickness and viscous resistance
increases, the inlet speed decreases. In fact, it is shown
that the governing equations are non-linear and
integro-differential in character; it will also be shown
that under certain conditions, the steady-state equa-
tions have no solution. Finally, from the analysis of the
time-dependent model, a simple criterion will be
presented to predict whether a given system will lead to
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nozzle blockage, and a brief comparison with some
experimental results with water due to Des Ruisseaux
and Zerkle is made, showing good agreement.

THE HYDRODYNAMIC MODEL

A cylindrical pipe of length /; and radius r, has its
wall maintained at a constant temperature (T,,) below
the freezing temperature (T,,) of a fluid which is forced
through the pipe by a maintained pressure drop (P)
over the ends of the pipe. The fluid loses heat to the
colder wall and starts to solidify, forming a crust on the
tube wall. The fluid temperature at the inlet is assumed
constant and uniform at a value T, greater than the
melting temperature. Without loss of generality, the
outlet pressure may be assumed zero.

The densities of the fluid and solid phases arc
assumed to be identical and constant, denoted by p.
The thermal conductivities of fluid and solid (k; and &,
respectively) the kinematic viscosity (v), the specific
heat (C) of the fluid and the latent heat of fusion (H),
are all assumed constant.

We are concerned with the growth of the solidified
crust and so propose that the equations of momentum,
continuity and thermal energy are those of steady-
state, since the fluid motion will adapt itself to the
changing crust much more quickly than the crust can
change. Nevertheless, the fluid temperature and mo-
tion are time-dependent, via the crust, but quasi-
steadily so. This is the standard approximation for
large Stefan numbers, corresponding to the fact that
the timescale associated with the motion of the
interface is longer than either the thermal or viscous
timescales. We have axial and radial velocity fields,
respectively w*, and u*, defined as

WH(F®, 2%, %) = 20(1%)6% 72 (¥, 1¥)
x (1 = r*28% - 2(2*, %)) (1)
u*(r*, 2%, %) = (r*/0*)(00*/0z* )w* (2)
where r* = 3*(z*, 1*) gives the position of the solid/
liquid interface and Q(t*) is determined below. These
fields satisfy the mass continuity equation and the no-

slip condition at r* = 6*, (see [4]). We define a local
Reynolds number

Re = 20(*)/vd*  (=20%Ww*/v) 3)

based on local pipe diameter and local bulk axial

velocity w*. We similarly define a local Peclet number
Pe = 20(t*)/ko* (=20*w*/k). {4)

The local bulk axial velocity (radially averaged) is

i
WH(ZF (%) = % 72 [ 2rEwE(r*, ¥ ) de* {3)

o
that is
WH(z¥ 1) = Qe*)/0% 2 (2*, 1*), {6)

The equation for the pressure drop down the pipe is
the familiar

(‘:p* — pj'\()*l

v 46 M

where in the case of laminar flow the friction factor, £, is
given by

f=64/Re (8)
and so

cp¥ —8pvO(r*)
;,’7" = j Q - )
Oz% OFHz* R

Equation (9) has to satisfy the following boundary
conditions

PO %)= P {10)

PFU %) = 0 (1)

and in order to satisfy these conditions, Q(r*) must be
given by

[)
0=, S
8pv( OF T H(x*F r*)dxE
Jo

giving the fluid pressure
C o
p(z* 1*) = P* :/t’ (13)
[ SF 7 H(xx t*)dx*

It is clear from (12) and (13) that both the fluid
pressure and velocity depend upon the crust over the
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entire length of the pipe. It should also be noted that if
5* is a monotonically decreasing function of ¢* then
Q(t*) will be a monotonically decreasing function of t*,
and so the inlet velocity will decrease as the crust
thickens.

THE THERMODYNAMIC MODEL
The quasi-steady heat-transfer model for the fluid is
LT LOT* #T* 1 oT* +32T*
dr* dz% T\ ar¥r  px o 0%
(14)

for0 < r* < §*and 0 < z* < l,. For the solid region,
we have

1 oT*

r¥ Or*

PT*

T
- o

52*2

for &% <r¥ <r, and 0 < z* <l,. Equations (14)
and {13) are to be solved subject to the conditions

0 (15)

TH*0,0) = T, 16)
T, ) = T, )
Tt =T, 18)

% % 67’*
L O
a* ar* Py or* gt

At this point, it is convenient to non-dimensionalise
the equations. We use the following scalings

O*(2*,1*) = rod(z,t) (20)
T*(r*,z%,t*) = T, + (T, — T,,)0(r,2,t) (21
where the independent variables are scaled
r¥ = por 22}
z* = 2Q(0)z/x (23)
t* = pHr§t/2k (To — Ty) 24)
to obtain
i r*\[r 85 060 &0
a‘f(l “E)(E %o 5)
20 106 1 &
=D(t)(—3r—2+; 5.{-;’;—%— %;g) (25)
for0 < r < dand 0 < z < o, with
79 106 1 o8
P i (26)
ford < r < land 0 < z < « subject to
8(r,0,t) =1 27)
8(5,2,t) =0 (28)
0(1,z,¢) = -6, 29)
and the interface condition
a6k, 06
R L
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where
1% dz
Dit) = Q(0)/Q(r) = 5 L e (3
Pey = 2Q(0)/kry = Pe at t =0 32)
o = klp/2Q(0) = lo/roPey (33)
6y = (T ~ TWTo — Ty} (34)

We have the boundary and initial conditions on &

30,6) =1 (35)
8{z,0)=1 {36)
so that from (12);
Q(0) = Pr/8pvl, 37)
o = dpvicl3/Pr (38)
Pey = Prijapvil,. (39)

In this analysis, the Peclet number is assumed to be
large enough to justify the neglect of axial conduction
in (25) and (26). This is consistent with the small slope
of the solid/liquid interface, that is 86*/0z* is of order
(1/Pe,). In the important case of blockage, the large
Peclet number expansion will break down when é is of
order 1/Pe,. A different scaling is required here,
together with consideration of an asymptotic match
between the outer solution outlined above and an
inner expansion. This inner expansion would have to
include axial conduction and time rates of change of
temperature since progress towards blockage becomes
very rapid. The analysis involved in this procedure is
complicated (see, for example, Stewartson et al. [7]).
Nevertheless, the present analysis provides the leading
term in the asymptotic expansion and the results given
are to be interpreted in this sense.

A case of practical interest is the flow of liquid steel
through a tundish nozzle. Since for liquid metals the
Prandtl number (v/k) is small, then it follows that the
Reynolds number (Re = xPe/v) is large. This then
implies that the flow is turbulent and the present
analysis must be considered as only a first approxi-
mation. (The authors intend to return to the case of
turbulent flow in a later publication.)

By neglecting terms of order (1/Pe), equation (26)
with {28) and (29) has the solution

In{r/d(z,1))
Inéz,t)

It then remains to solve (25) subject to (27), (28) and
(30). This system is complicated by the presence of § in
(25) and (30), coupling these two equations in a
complex way. To simplify matters, we remove the
moving boundary by writing

B(r,z,t) — T(R,2)

6(r,z,t) =8, (40)

41)
via
r = Rd{z,1)

which has the following effect on derivatives

(42)



234

& 1 ¢

or & 6R )
0 ¢ R @& ¢ (44)
dz 0z 8 éz @R

and so equations (25), (27), (28) and (30) become
respectively

T 2T 16
(1—R2);7=D(z){ﬁ n (T} (45)

éR? R 2R
T(R,0)=1 (46)
T(l,z) =0 (47)
,0_ B LT (48)
dt  5lnd & R, \

where we have ignored axial conduction in (25), used
(40) in (30) to obtain (48) and where

(49)

Equation (45) with boundary conditions (46) and (47)
is the Graetz—Nusselt problem for an isothermal wall
which was investigated by Sellars et al. [5]. The
equation is modified by the presence of D(¢), admit-
tedly dependent on §, which affects their analysis only
parametrically. For a given D(t), (45) can be solved and
an expression for T/0R at R = 1 evaluated and used
in (48) to find § at the next time step. A new value for
D(t) can then be calculated. The initial conditions are
given by equation (36) and by implication and de-
finition (31), D(0) = 1. There are two independent
dimensionless parameters which determine the
position of the crust, namely « and B.

THE CRUST

This analysis is concerned primarily with the de-
velopment of the solid crust and so all that is needed is
an expression for ¢T/0R at R = 1. This can be
obtained either by direct numerical integration of (45),
which can be considered independent of time, or by
further analysis. Alternatively, one can take advantage
of the work done by Sellars et al. [5] on the classical
Graetz problem and use

<6T> - i C Ry(1)e—4 Pz = f(z,1) (50)
R=1

JdR oyt
where the C,, R,(1) and /, are provided by the
aforementioned party for n = 0 to 9 and one may use
the asymptotic solutions [5] for n > 9.
This series is derived from the solution to (45)—(47)
which is

T(r.z)= ¥ CRyfre 4P

n=0

(51

where R, satisfies the homogeneous differential
equation

rR, + R, + 22r(1 — )R, =0 (52)

P. SamPsoN and R. D. GiBsON

with R(1) = 0, R,(0) = 1 and R,(0) = 0.

For small zD(t), the series in (50) is slowly convergent
and since we expect o to be small in certain cases of
experimental interest, it will be more useful to have an
expression for (¢T/0R)g., as = - 0. This was de-
termined to be

AT
(;{}z }

. ‘R=1

—0.670792-0.678325(Dz)" ' as Dz —0
(53}

from a least-squares fit to (50} for small z.

Having calculated (¢T/¢R)y . ,. analysis shows that
a phase-plane plot of 86/t vs § at a given distance
down the pipe has two distinct sets of curves (see Fig.
2). The top curve (i) clearly shows two possibilities for
steady-state solution where it crosses the ¢ axis. The
path is from right to left as time increases and ¢ will
reach o, after a time t,. This is apparently a stable
steady-state solution. There is no way to reach the
point (*). Curve (ii) shows a trajectory for which there
is no steady-state solution and in this case the pipe will
block. The critical case where the § axis is tangent to
the curve is technically unstable since @6/¢t is alwayvs
less than or equal to zero but numerical evidence
indicates that an infinite time would be needed to reach
the tangent.

In principle, for a given B and «, a curve for d(x, ()
could be quickly produced without having to solve the
differential equation (48) for 6. However, since the right
hand size of (48) depends upon z and D(r), which in
turn depends on the crust over the entire length of the
pipe. a numerical solution of (48) is necessary. Ad-
ditionally, if one required to know the time taken to
reach a steady-state, a phase-plane plot alone would
not give this. Since equation (48) is integro-differential,
we examine the critical points in the phase-plane in
greater depth.

STABILITY OF SOLUTIONS

Equation (48) was first solved in conjunction with
(45) for the steady state crust. 1t was solved with fifteen
radial grid points by the method of lines using a
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standard IBM Application Package, the System/360
Continuous System Modelling Program (CSMP). The
independent variable z was rescaled as Dz to avoid
repetition of the calculations. The only parameter to
vary was B. The rescaling of z meant that for a given «
and B, the equation

_ L[ de
~aD [, 5E/D)

has to be solved for D. The right hand side of this
equation is a monotonically increasing function of aD
starting at the value 1 when aD = 0.1t can be seen from
Fig. 3 that, as predicted, there are either two, one or no
solutions to this equation depending on the value of B.
The double solution was noted, in terms of two distinct
Reynolds Numbers, by Des Ruisseaux and Zerkle [6]
and they stated that only one solution was stable.
For a given « with B < B,,;, two values of D return
two possible steady state configurations for the crust.
The larger value of D would result from a crust which
had encroached further into the liquid. It is main-
tained that the crust would never actually reach this
state and would stop development at the lower value of
D. This may seem clear from Fig. 2; however, Fig. 2
shows only the phase plane of the value of the crust at
the end of the pipe. In fact, we need to show that the
point marked S is stable in the entire ‘phase-
continuum’ for all z since (48) is an integro-differential
equation. This is a fairly straightforward but lengthy

process.
Equation (48) can be written as
or_28 +f(z,t) for 0<z<
& Inr JED rEszse
and 0 <t (54)
where
1{* dz
=62 and D() == | ——. 55
© afo ey Y

It is known that as z—0

235

f=0(z"13) and I'(z,t) > 1
and as z — ©
f=06")

and that f is monotonically decreasing with z. If we
assume a steady state solution given by I' = I'y(z) and
D = D, then

2B
T, +f(z)=0 (56)
ie. I'y = exp[ —2B/f(2)]
and so
D, = 1 fd exp[4B/f,(z)]dz
% Jo
or
r (>
D, = 2D, L exp[4B/f(z/D)]dz. (57)

Equation (57) has two, one or no solutions for D, as
depicted in Fig. 3, since f; is monotonically decreas-
ing, and so the right hand side is monotonically
increasing from the value one. We now perturb this

solution and set
D(t) = D, + d(t); I'(z,t) = I'|(z) + y(z,¢) (58)

and this gives, from (54)—(56) as y and d are small

dy  —2By | zd(t)df
o T,In’T, D, dz (59)
=2 " y(zt)dz
R e ©0)
Introducing normal modes by letting
(z,t) = €"g(z)
where o is the growth rate, then
2B 2z df; [ g(z)dz
(” "I rs>g(z)— aD, dz L ORI

This is a homogeneous integral equation for the
eigenvalue o with separable kernel and can be solved in
a standard manner.

The integral on the right hand side of (61) is a
constant, albeit unknown, which we denote by G and
so (61) yields

gz) 2Gz(df,/dz)
Ir}z)  aDJI3(o + 2BT,In’T,)"

(62)

We then integrate (62) from z = 0 to z = « and the
condition for a non-trivial solution is

_ -2 f * (z/D,)(df/d2)dz
« Jo T3(o + 2B/T,In’T))
which determines o.

Substituting for I'y(z) from (56) in the integral then
gives

(63)
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_—4B r /ZA(fifs/dZ)eXPwB/f(Z))dZ (64)
T D, [y 2Bo + fH(z)exp(2B/fi(z)
If ¢ = 0 we recover
_ 4B 7 dfs .
=D, ‘[0 x exp[4B/f(x ]d 20 {65)

which can be integrated by parts, in conjunction with
(57), to give

D, = ;»exp[4B,/fs(a)] when ¢ = 0. (66)
Note that this equation can be obtained directly from
(57) by differentiation with respect to D, and so (66)
corresponds to the critical case of the single (repeated)
root solution to (57).

When (57) has two distinct roots, D{! and D
(> D, it is fairly clear that for the same « and B there
exists a unique solution D} to (66) for which D{" < D}
< D@ _although D} does not of course satisfy (57). Itis
also apparent that

DY > L exp@BIf1 ) 7

and
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1 :
DY < ;exp{4B,/’j D)), {68}

We now assume that ¢ is positive, then equation (64)
V(df“’/d Jexp(6B/f{)dz

gives
| = “[E [
aD |, 2Bo + [ exp(2B/f )
—4B [* j‘“/dh)exp(4B ndz
<),

(11\2
I (1)
D(“exp(4B/f (o))

ie. DM < 2exp(4B/f (1(ar)).

This contradicts (67) and so D!}’ cannot satisfy (64) for
positive o, hence D!!’ represents a stable crust. The
above and following arguments depend upon the
quantity ¢ + 2B/T, In? T being positive, otherwise the
inequalities would be reversed. If this were not so,
equation (63) would admit no real solutions for D
since dfy/dz < O for z > 0. Equation (63) could
conceivably have real solutions for D, if the quantity
¢ + 2B/T,In* T, changed sign but then g(z) would be
unbounded when this happened, as indicated by {68).

a= 1073
B =95

2/

070 0,80 030

1.00
DU

Fic. 4.
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Next, assume that D is a stable solution with ¢ < 0;
then (64) gives

_4B
= aD®

—4B
ap?

1

J‘ * z(df ®/dz)exp(6B/f)dz
2Bo + f P exp(2B/f)

f * 2(df'P/dz)exp4B/fP)dz

2)2
fe

0

0

1
= @ CXPEB/ P ~ 1

1
ie. D> iexp[w/f P()]
which contradicts (68) and so D{¥) cannot represent a
stable solution.

TIME DEVELOPMENT

The solution to equation (48} is obtained for various
values of B and « by a fourth order Runge-Kutta

process on the function I'(z,1) = 6%(z,t). Att = 0,
oI'/ot is undefined so we start with
[o(dt) =1 (69)
. 3
Ty(30) =1 - 5 (Bdr)'” (70)

5.

[0 =1~2B5)"2 2<j<N, Néz=u
(71)

where T ((t) = I'(jéz, t}is based on the solution of 6T/t
= 2B/InT for small 1. The value of 4t is chosen to
ensure that the trajectory of 8(x, t) (Fig. 2) starts near &
= |, giving dt as typically 0.01. The number of axial
grid points, N, is 20, At each of the four substeps of the
Runge-Kutta integration, D(¢) must be evaluated. The
method chosen was an integration by Simpson’s Rule.
Then (0T/0R)g-, is evaluated using (50) or (53) for
each grid point.

Figure 4 is an example of the growth of the solid
crust where a steady-state is reached and Fig. 5 shows
the development towards blockage in a pipe of the
same length at a lower wall temperature. In Fig. 7 we
show a curve giving critical values of B for a given «
dividing blockage and non-blockage regimes.

The parameter o is typically very small and it would
seem that the equation of the critical line is described
to a good approximation by

B == 107347120 (72)

for 1077 < a < 1073 Note that for a given fluid,
physical changes and their effect on « and B can be
briefly summarised by
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(|a3/é] < 1079),

t Denotes blockage times.

Table I. & = 10°°
ds(x) D, w N
0.9935 1.020 0.00297 ‘ \? ?‘OC kage o
0.9602 1129 00223 \i regren
0.9256 1.261 0.0450 N
0.8895 1.423 00673 . IR
0.8513 1627 00975 NG g
0.8107 1.892 0.125 \\ 2
0.7669 2.250 0.160 . L ‘1111\ L
0.7184 2.762 0.2025 5 -4 3 2
0.6628 3.568 0.280 log,e @
0.5936 5.085 0410
04718 10.790 1.280 Non = blockage
<0.25%
<0.15%
<0.10%
* Where t, is the time taken to reach the steady-state FiG. 7.
and
AB AT, AT,
e e (74)
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Table 1 presents results for a particular numerical
experiment. The value of « was 10”3 and B was varied
in the manner shown. The last three values of B led to
the pipe blockage as the accompanying Fig. 6 (the
phase-continuum diagram) shows. The time taken (in
dimensionless ‘seconds’) for the system to reach steady-
state is shown, along with the steady-state value D, of
D(t) and the steady-state value o («) of &(x,¢) where
applicable.

It was noted earlier that it is difficult to find the exact
value of B for a given a which divides the
blockage/non-blockage regions because the compu-
tation time increases as we approach this value.
However, the previous stability analysis shows that the
critical case corresponds to equation (57) having
repeated roots. This permits us to define a dividing line
in the o, B plane which separates blockage from non-
blockage regions (see Fig. 7). We note that (66) can be
rewritten as

Irrw -

D,
2

1 -4
25s (@). (75)
To determine Ja) (the critical steady-state crust
position at the nozzle exit) we draw a graph of (75) with
log D, as ordinate and log . *(x) as abscissa for
variable B. (This is a straight line through the point (0,
log 2) with unit gradient.) If we then plot on the same
graph some non-critical values of log D, and log 6. *(«)
for fixed a, we obtain a further curve. The point of
intersection of the two lines must then give the critical
values of d(x) and D,. Figure 8 shows results from
Table 1 with critical values of 0463 and 10.9

HMT 24:2 - D

respectively.

COMPARISON WITH EXPERIMENT

Figure 9 shows some experimental results, taken
from [6], where water at approximately 20°C has been
passed through a pipe, at various values of wall
temperature and inlet pressure. The solid symbols
represent cases where blockage occurred and the open
symbols denote steady-state solutions. Superimposed
is a curve showing the dividing line between blockage
and non-blockage derived from the theory presented
in this paper. The value of the quantity pvk was taken,
at the freezing point of water, to be 2.38x 1071°
kgm s~ 2. This is higher value than that which would
have been used by Des Ruisseaux and Zerkle and so
the values of « calculated for the experimental points
are probably too high.

Some experiments on liquid steel are planned by
British Steel at the Grangetown Laboratories. The
experiments will be carried out with pipes of lengths
between one and three feet and internal diameter of
one inch. Vacuum suction will be used to supply the
pressure drop. For liquid metals of Prandtl number
0.01 flowing through a pipe of aspect ratio l,/r, = 20,
the parameter « 2000/Re,. With a thermal
diffusivity of 2 x 1075 m?*s ™! and a density of 7500 kg
m ™3, such a fluid, forced through a pipe of length 0.3 m
by a pressure drop of 10° kg m ™! s 2, will have a value
of @ ~ 2.1 x 1078 If this fluid has a melting point of
1700 K, enters the pipe at 1900 K where the wall
temperature is 300 K, a value of Bwillbe ~ 7 and it can
be seen from Fig. 8 that a steady state solution will be
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predicted. If the pipe length is quadrupled, we have
blockage. However, as previously remarked, flow of
liquid steel will be in most cases turbulent, highly
desirable from the point of view of mixing and an even
distribution of impurities. Because of these impurities,
there will also be a ‘mushy region’ and not a single 4
melting point. It is our intention to incorporate these

modifications in new models. 5

REFERENCES

1. R. D. Zerkle and J. E. Sunderland, The effect of liquid 6.

solidification in a tube upon the laminar flow heat

transfer and pressure drop, J. Heat Transfer 90C, 7.

183-190 (1968).

e e S L

. M. Epstein, A. Yim and F. B. Cheung, Freezing-

controlled penetration of a saturated liquid into a cold
tube, J. Heat Transfer 99C, 233--238 (1977).

. M. N. Ozisik and J. C. Mulligan, Transient freezing of

liquids in forced flow inside circular tubes, J. Heat
Transfer 91C, 385-389 (1969).

E. P. Martinez and R. T. Beaubouef. Transient freezing in
laminar tube-flow, Can. J. Chem. Engng 50, 445-449
(1972).

. J.R. Sellars, M. Tribus and J. S. Klein, Heat transfer 1o

laminar flow in a round tube or flat conduit the
Graetz problem extended, Trans. 4m. Soc. Mech. Engrs
78C, 441--481 (1956).

N. Des Ruisseaux and R. D. Zerkle, Freezing of hydraulic
systems, Can. J. Chem. Engng 47, 233-237 (1969).

K. Stewartson and R. T. Waechter, On Stefan’s problem
for spheres, Proc. R. Soc. 4 348, 415-426 (1976).

UN MODELE MATHEMATIQUE DU BLOCAGE DE TUYERE PAR CONGELATION

Résumé—On présente un modeéle mathématique qui décrit la formation d'une croGte sur la parol interne
d'un tube froid a I'intérieur duquel s’écoule un fluide. Une résolution numérique/analytique du probléme de
la solidification interne est donnée et on présente des critéres qui donnent les conditions d’apparition d'un

blocage.



A mathematical model of nozzle blockage by freezing

EIN MATHEMATISCHES MODELL FUR DIE BLOCKIERUNG
EINER DUSE DURCH GEFRIEREN

Zusammenfassung — Es wird ein mathematisches Modell vorgelegt, welches die Ausbildung einer Kruste an

der Innenwand eines kalten Rohres beschreibt, das von einem Fluid durchstromt wird. Eine numerisch/ana-

lytische Behandlung des inneren Erstarrungsproblems wird durchgefiihrt und Kriterien angegeben, aus
denen die Bedingungen ersichtlich sind, unter welchen Blockierung auftritt.

MATEMATUYECKAS MOJEJIb BJIOKUPOBAHHUSA COITIJA TMPHU 3ACTBIBAHUH
XKXHUIKOCTH

Annoraums - [lpe icTaBieHa MaTeMaTHYECKAs MOEJb 3aTBEPAEBAHHA HHUAKOCTH HA BHYTPEHHEH CTEHKE

oxnaxaemofi TpyOnl. Jlaetcsi UHC/IEHHO-aHANHTHYECKOE pELICHHE 3aJa4YH HANpaBJeHHOro BHYTPb

npouecca 3aTBEPIAEBAHUA M [PEACTABIEHbl KPHUTEDHHM [UIA ONPENCICHHA YCNOBHA BO3HMKHOBEHHS
6.10KHPOBKH COMna.
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